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Abstract. The calculation of branching rules, tensor products and plethysms of the infinite-
dimensional harmonic series unitary irreducible representations of the non-compact group
SO∗(2n) is considered and the duality betweenSO∗(2n) andSp(2k) exploited. The branching
rule for the restriction of an arbitrary harmonic series irreducible representation ofSO∗(2n) to
U(n) is derived, and the decomposition is given explicitly for each of the infinite number of
fundamental harmonic series irreducible representations,Hm, of SO∗(2n) whose direct sum
constitutes the metaplectic representation,H , of SO∗(2n). A concise expression for the
decomposition of tensor products is derived and a complete analysis of the terms in both
Hm × Hm′ and H × H is given. A general formula for plethysms of arbitrary irreducible
representations ofSO∗(2n) is derived and its implementation illustrated both by means of a
detailed generic example and by a complete determination of the symmetric and antisymmetric
terms ofH × H . Finally, relationships that arise from the embedding of the product groups
SO∗(2n)× Sp(2k) andSp(2n,R)×O(2k) in the metaplectic groupMp(4nk) are discussed.

1. Introduction

The groupSO∗(2n) occurs as a maximal non-compact subgroup of the metaplectic group,
Mp(2n), which is also the double covering group for the non-compact symplectic group
Sp(2n,R) which finds important applications as the dynamical group of the harmonic
oscillator. The groupSO∗(8) has been considered in the literature [1, 2] with the local
isomorphismSO(6, 2) ∼ SO∗(8) being exploited to show the existence of a complete set
of SU(3) tensor operators in the enveloping algebra ofSO∗(8). Here we wish to discuss
the general case of the groupsSO∗(2n) which leave the skew Hermitian form

−z1z
∗
n+1+ zn+1z

∗
1 − · · · − znz∗2n + z2nz

∗
n

invariant [3]. A preliminary account of the groupSO∗(2n) was given earlier [4]. That
paper was largely devoted to the holomorphic discrete series and harmonic series of the non-
compact groupsSp(2n,R) andU(p, q) with detailed derivations of appropriate branching
rules and tensor products. Only scant attention was paid toSO∗(2n) and the authors
concluded their paper with the remark: ‘little attention has been given toSO∗(2n) but we
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suspect that comparable formulae can be derived in this case, it being merely necessary to
changeD to B and modify other rules appropriately’. In this paper we explore in some
detail the properties of the irreducible representations ofSO∗(2n) and obtain the non-trivial
‘merely necessary’ changes. Recent work [5–7] has shed further light on the properties of
Sp(2n,R) andU(p, q), and more recently still [8] it has been found convenient to introduce
the notion of associate irreducible representations ofSp(2n,R). While such a notion owes
its origin to the existence of mutually associate pairs [11, 12] of irreducible representations
of SO(2k), such irreducible representations do not exist forSO∗(2n). Nonetheless, we
show herein that one can map self-associate finite sets of irreducible representations of
Sp(2n,R) into infinite sets of irreducible representations ofSO∗(2n).

Formulae are given for the evaluation of branching rules, tensor products and plethysms
for arbitrary unitary harmonic series irreducible representations ofSO∗(2n). These
irreducible representations all appear as constituents of some power of the harmonic
representation,H , of SO∗(2n). The representationH is the restriction toSO∗(2n) of
the irreducible metaplectic representation,1̃, of the metaplectic groupMp(2n). H is itself
reducible into a direct sum of an infinite number of fundamental irreducible representations
in accordance with the decomposition:

H =
∞∑
m=0

Hm =
∞∑
m=0

[1(m)] (1.1)

where it has been convenient to denote each of the infinite-dimensional fundamental
irreducible representationsHm of SO∗(2n) by [1(m)]. It is also convenient to write
H = H+ +H− with

H+ =
∞∑
k=0

[1(2k)] and H− =
∞∑
k=0

[1(2k + 1)]. (1.2)

Relatively simple expressions are obtained for the branching rules, tensor products and
plethysms involvingH and its various constituentsH± andHm for m = 0, 1, . . . ,∞. In
particular, complete results are given for the terms inH 2 = H × H and for those in the
symmetric and antisymmetric parts,H ⊗ {2} andH ⊗ {12}, respectively, ofH 2.

Throughout we follow the notation developed earlier [4, 5, 8, 9] for representations of
non-compact groups and certain signed sequences. In the case of the notation for partitions
and symmetric functions we follow that of Macdonald [10], while forS-functions series
and modification rules we call where appropriate on formulae collected together in three
previous articles [11–13].

2. SO∗(2n)→U (n) branching rule

It should first be noted that the non-compact groupSO∗(2n) and the compact groupSp(2k)
are a dual pair with respect toMp(4nk) in the sense that each is a maximal centralizer
of the other in the metaplectic groupMp(4nk). As a direct consequence of this, the
metaplectic representation ofSp(4nk,R) decomposes under restriction toSO∗(2n)×Sp(2k)
in accordance with the rule:

1̃→
∑
λ

[k(λ)] × 〈λ〉 (2.1)

where the summation is over allλ such that

λ′1 6 k and λ′1 6 n. (2.2)
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The procedure necessary to determine theU(n) content of each harmonic series irreducible
representation [k(λ)] of SO∗(2n) is closely related to that used forSp(2n,R) in section 5
of [4]. Consider the two group–subgroup chains:

Sp(4nk,R)→ SO∗(2n)× Sp(2k)→ U(n)× Sp(2k) (2.3a)

Sp(4nk,R)→ U(2nk)→ U(n)× U(2k)→ U(n)× Sp(2k). (2.3b)

The first of these gives

1̃→
∑
λ

[k(λ)] × 〈λ〉 →
∑
λ,µ

εkB
µ
λ {µ} × 〈λ〉 (2.4)

while the second leads to

1̃→
∑
m

ε1/2{m} →
∑
µ

εk{µ} × εn/2{µ} →
∑
µ,λ

εkR
µ
λ {µ} × 〈λ〉 (2.5)

or, equivalently,

1̃→
∑
m

ε1/2{m} →
∑
µ

εk{µ} × εn/2{µ} →
∑
µ

εk{µ} × 〈µ/B〉

=
∑
ν

εk{ν · B} × 〈ν〉 (2.6)

where [11–13]

B =
∑
β

{β} = {0} + {12} + {22} + {14} + {32} + {2212} + {16} + · · · (2.7)

with the summation taken over all partitionsβ such that each distinct part is repeated an even
number of times. In (2.4) the coefficientsBµλ are the required branching rule coefficients
for SO∗(2n) → U(n), while in (2.5) the coefficientsRµλ are the known branching rule
coefficients forU(2k)→ Sp(2k). These are defined implicitly by (2.6). We thus arrive at
the following.

Proposition 2.1.Let λ be such thatλ′1 6 min(k, n). Then on restriction fromSO∗(2n) to
U(n) the irreducible representation [k(λ)] of SO∗(2n) decomposes in accordance with the
branching rule:

[k(λ)] →
∑
µ

εkR
µ
λ {µ} = εk · {λs}〈2k〉 · B (2.8)

where{λs}〈2k〉 is thesigned sequence[4, 5, 8, 9]

{λs}〈2k〉 =
∑
ν

ξλν {ν} (2.9)

with the summation extending over allν with ν ′1 6 2k such 〈ν〉 = ξλµ〈λ〉 under the
modification rules ofSp(2k).

The superscript〈2k〉 has been used as a notational device to emphasize that the signed
sequences are constructed from a knowledge of the modification rules ofSp(2k). These
rules [11, 13] are such that the non-vanishing coefficientsξλν are all±1.

It follows from further consideration of the limitations imposed by branching via
U(n) × U(2k) in (2.5) and (2.6) that (2.8) can be rewritten in the computational simpler
form

[k(λ)] → εk · {{λs}〈2k〉N · BN }N (2.10)
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whereN = min(2k, n). The first · indicates a product inU(n) and the second· a product
in U(N) as implied by the various subscriptsN which limit all terms to those labelled by
partitions into no more thanN parts.

Irreducible representations [k(λ)] of SO∗(2n) satisfying (2.2) will be said to bestandard.
The signed sequence{λs}〈2k〉N associated with modifications inSp(2k) is rendered finite by
the constraint implied by the subscriptN . Thus fork = 2 andn = 4 we haveN = 4 and,
for example,

{31}〈4〉4 = {31} − {313} (2.11a)

whereas fork = 2 andn = 3 we haveN = 3 and only the first term survives:

{31}〈4〉3 = {31}. (2.11b)

In general the modification rules [11, 12] forSp(2k) are such that for each standard
irreducible representation [k(λ)] of SO∗(2n) the corresponding signed sequence takes the
form

{λs}〈2k〉 = {λ} − {ν} ± {ρ} + · · · with λ′1 < ν ′1 6 ρ ′1 6 · · · (2.12a)

where

{ν ′} = {2k + 2− λ′1, λ′2, λ′3, . . .}. (2.12b)

Standard irreducible representations [k(λ)] associated with signed sequences{λs}2kN involving
just one term are said to behighly standard. From (2.12) it can be seen that this will be
the case whenever

2k + 2− λ′1 > N = min(n, 2k). (2.13)

In particular this condition is automatically satisfied ifλ′1 6 1. Hence all the irreducible
representations [k(m)] are highly standard, includingHm = [1(m)] for all m.

More generally, for all highly standard irreducible representations ofSO∗(2n) (2.10)
simplifies to just

[k(λ)] → εk · {{λ} · BN }N. (2.14)

For example, the highly standard irreducible representation [2(31)] of SO∗(6) branches
underSO∗(6)→ U(3) as

[2(31)] → ε2 · {{31} · B3}3 = ε2 · {{31} · ({0} + {12} + {22} + {32} + {42} + · · ·)}3
= ε2 · ({31} + {321} + {322} + {412} + {42} + {422}
+{431} + {521} + {53} + · · ·)
= {532} + {543} + {524} + {632} + {642} + {642} + {653}
+{743} + {752} + · · · . (2.15)

In the case of the standard, but not highly standard irreducible representation [2(31)] of
SO∗(8) we have from (2.10) and (2.11), forSO∗(8)→ U(4)

[2(31)] → ε2 · {({31} − {313}) · B4}4 = ε2 · {({31} − {313}) · ({0} + {12} + {14} + {22}
+{2212} + {24} + {32} + {3212} + {42} + · · ·)}4
= ε2 · ({31} + {321} + {322} + {412} + {42} + {4212} + {422} + {431}
+{521} + {53} + · · ·)
= {5322} + {5432} + {5242} + {6322} + {6422} + {6432} + {6422} + {6532}
+{7432} + {7522} + · · · . (2.16)
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In the particular case of the fundamental irreducible representationsHm of SO∗(2n) we
have

Hm = [1(m)] → ε · {{m} · B2}2 =
∞∑
r=0

ε · {m+ r, r} =
∞∑
r=1

{m+ r, r} (2.17)

sinceB2 =
∑∞

r=0{r2} and the relevant products are taken inU(2) with ε = {12}. It follows
that underSO∗(2n)→ U(n) the basic harmonic representation decomposes as

H =
∞∑
m=0

[1(m)] →
∞∑

m,r=0

ε · {m+ r, r}. (2.18)

Equivalently, but more formally, we have

H =
∞∑
m=0

[1(m)] →
∞∑
m=0

ε · {{m} · B2}2 = ε · {MB2}2 = ε · F2 (2.19)

where quite generally [11–13]

M =
∑
m

{m} and MB = F =
∑
ζ

{ζ } (2.20)

with the latter sum being over taken over all partitionsζ , although in (2.19) the subscript
on F2 indicates that the series is to be restricted to partitions involving at most two parts.

3. Tensor products for harmonic unirreps of SO∗(2n)

The case of tensor products for the holomorphic discrete series ofSO∗(2n) was considered
in [4] which gave the result as ([4] (7.12))

[{µ}] × [{ν}] = [{µ · ν · B}] (3.1)

The corresponding results for the harmonic irreducible representations follow in a very
similar fashion to [4] (8.10)–(8.15) by consideration of the two group–subgroup chains

Sp(4nk + 4n`,R)→ Sp(4nk,R)× Sp(4n`,R)
→ SO∗(2n)× Sp(2k)× SO∗(2n)× Sp(2`)
→ SO∗(2n)× Sp(2k)× Sp(2`) (3.2)

and

Sp(4nk + 4n`,R)→ SO∗(2n)× Sp(2k + 2`)

→ SO∗(2n)× Sp(2k)× Sp(2`). (3.3)

Under (3.2) we have

1̃→ 1̃× 1̃→
∑
µ,ν

[k(µ)] × 〈µ〉 × [`(ν)] × 〈ν〉

→
∑
µ,ν,λ

K
µν
λ [k + `(λ)] × 〈µ〉 × 〈ν〉 (3.4)

whereKµν
λ are the required tensor product coefficients forSO∗(2n). Alternatively, under

(3.3) we have

1̃→
∑
λ

[k + `(λ)] × 〈λ〉

→
∑
λ

[k + `(λ)] ×
∑
µ,ν

R
µν
λ 〈µ〉 × 〈ν〉 (3.5)
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where the coefficientsRµνλ are the branching rule coefficients for the restrictionSp(2k +
2`) → Sp(2k) × Sp(2`). Comparison of (3.4) and (3.5) shows thatKµν

λ = Rµνλ , thereby
yielding the following.

Proposition 3.1.The tensor product of a pair of unitary harmonic irreducible representations
[k(µ)] and [̀ (ν)] of SO∗(2n) decomposes in accordance with the rule

[k(µ)] × [`(ν)] =
∑
λ

R
µν
λ [k + `(λ)]. (3.6)

To implement (3.6) it is convenient to note that under the restrictionSp(2k + 2`) →
Sp(2k)× Sp(2`) we have

〈λ〉 →
∑
µ,ν

R
µν
λ 〈µ〉 × 〈ν〉 =

∑
κ

〈λ/κ〉 × 〈κ/B〉. (3.7)

This may be derived through the use of standardS-function methods [11].
An alternative formula may be derived from a consideration of the group–subgroup

chains

SO∗(2n)× SO∗(2n)→ U(n)× U(n)→ U(n) (3.8a)

SO∗(2n)× SO∗(2n)→ SO∗(2n)→ U(n). (3.8b)

Using (2.8) the first of these gives

[k(µ)] × [`(ν)] → (εk · {µs}〈2k〉 · B)× (ε` · {νs}〈2`〉 · B)
→ εk+` · ({µs}〈2k〉 · {νs}〈2`〉 · B) · B (3.9)

while from (3.6) and the use once more of (2.8) we obtain

[k(µ] × [`(ν)] =
∑
λ

R
µν
λ [k + `(λ)]

→
∑
λ

R
µν
λ ε

k+` · {λs}〈2(k+`)〉 · B (3.10)

with λ′1 6 N = min(k + `, n). Comparison of (3.9) and (3.10) then yields the following.

Proposition 3.2.The tensor product of a pair of unitary harmonic irreducible representations
of SO∗(2n) decomposes in accordance with the rule

[k(µ)] × [`(ν)] = [k + `(({µs}〈2k〉 · {νs}〈2`〉 · B)N)] (3.11)

whereN = min(k + `, n) and

(λ)N =
{
(λ) if λ′1 6 N
0 otherwise.

(3.12)

Either (3.6) or (3.11) may be used to evaluate tensor products. Equation (3.6) has
advantages when a single coefficientR

µν
λ is required. In that case signed sequences are not

needed. However, equation (3.11) is particularly useful in evaluating complete products.
By way of example, consider the evaluation of the terms, to weight eight, in the tensor

product [2(21)] × [3(12)] for the groupSO∗(8). SinceN = 4 all products appearing in
(3.11) may be evaluated withinU(4) and the signed sequences restricted to the terms

{21s}〈4〉 = {21} − {213} (3.13a)

{12
s }〈6〉 = {12}. (3.13b)

Their product inU(4) yields the terms

{213} + {221} − {231} + {312} + {32} − {3212}. (3.14)
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Since we are evaluating terms to weight eight only terms in theB-series to weight three
are relevant, that is the two terms

{0} + {12} (3.15)

and forming the product we obtain the terms, to weight eight, as

{213} + {221} + {231} + {312} + {32} + 3{3212} + 2{322} + 2{321} + {413}
+2{421} + {43}. (3.16)

Changing the notation to that forSO∗(8) and inserting the integer 5 in front of each partition,
we finally obtain the result

[2(21)] × [3(12)] = [5(213)] + [5(221)] + [5(231)] + [5(312)] + [5(32)] + 3[5(3212)]

+2[5(322)] + 2[5(321)] + [5(413)] + 2[5(421)] + [5(43)] + · · · . (3.17)

4. The explicit decomposition ofH ×H

Equation (3.11) is also useful in deriving explicit complete fomulae for tensor products. In
particular the use of (3.11) immediately leads to the result

Hm ×Hm′ = [1(m)] × [1(m′)] =
∞∑
p=0

min(m,m′)∑
x=0

[2(m+m′ + p − x, p + x)]. (4.1)

This can be seen by noting that successive multiplication inU(2) of a term{p2} in B by
{m} and then{m′} can be carried out diagrammatically to give

a a a c c c c c c d d d

b b b d d
(4.2)

where there are preciselyp columns containing the pair(a, b), m entriesc in the first row
andm′ entriesd, x of which are in the second row and the remainder in the first, with no
identical entriesd allowed in the same column.

Extending this analysis to the case of the square of the basic harmonic representation
we have the following.

Proposition 4.1.ForH as defined in (1.1)

H 2 = H ×H =
∞∑
r=0

r∑
s=0

(r − s + 1)(s + 1)[2(r, s)]. (4.3)

Proof. We have from (1.1) and (4.1)

H 2 = H ×H =
∞∑

m,m′=0

[1(m)] × [1(m′)]

=
∞∑

p,m,m′=0

min(m,m′)∑
x=0

[2(m+m′ + p − x, p + x)]

=
∞∑
r=0

r∑
s=0

Cr,s [2(r, s)] (4.4)

whereCr,s is the number of diagrams of type (4.2) having rows of lengthr ands for anyp,
m, m′ andx. For fixedr ands it is clear that the distribution of the letters is such that the
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number ofds in the second row of lengths can vary from 0 tos, while the number in the
first row of lengthr can, independently, vary from 0 tor−s. ThusCr,s = (s+1)(r−s+1),
as required. �

It is useful for later work to splitH into its even and odd parts,H+ andH−, respectively,
which are defined in (1.2). The coefficientsCηζrs of the terms [2(r, s)] in the various products
Hη ×Hζ are given by the following proposition

Proposition 4.2.Let Crs = (r − s + 1)(s + 1). Then forη, ζ ∈ {+,−} we have

Hη ×Hζ =
∞∑
r=0

r∑
s=0

Cηζrs [2(r, s)] (4.5)

with

C++rs =


1
2(Crs + 1) if r ands are both even
1
2Crs if r ands are both odd

0 otherwise

(4.6a)

C−−rs =


1
2(Crs − 1) if r ands are both even
1
2Crs if r ands are both odd

0 otherwise

(4.6b)

C+−rs = C−+rs =


1
2Crs if r is even ands is odd
1
2Crs if r is odd ands is even

0 otherwise.

(4.6c)

Proof. First it should be noted that

Hη ×Hζ = [2(Mη ·Mζ · B)2] (4.7)

whereM+ =
∑

meven{m} andM− =
∑

modd{m}. Since all the term ofB are of even weight
it follows that all terms [2(r, s)] of bothH 2

+ andH 2
− must be of even weight, so thatr and

s are either both even or both odd. Similarly, all the terms ofH+ ×H− must haver ands
of opposite parity. This accounts for all the 0’s appearing in (4.6a–c).

SeparatingH 2 = (H+ + H−)2 = (H 2
+ + H 2

−) + 2(H+ × H−), as given by (4.3), into
terms of even and odd weight, then immediately gives (4.6c). Moreover to separate the
terms ofH 2

+ + H 2
− into those of (4.6a) and (4.6b) it is merely necessary to show that

H 2
+ −H 2

− =
∑∞

r=0

∑r
s=0[2(r, s)] with the summation restricted tor ands both even. This

may be established, by using (4.7) and variousS-function series identities [5, 13] which
imply that

H 2
+ −H 2

− = [2((M2
+ −M2

−) · B)2] = [2(W · B)2] = [2(D2)] (4.8)

where the restriction of theS-function seriesD to two-part partitions givesD2 =∑∞
r

∑r
s=0{r, s} with r ands both even, as required. �
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5. Symmetrized powers of irreducible representations ofSO∗(2n)

Following the techniques of section 6 of [8] it is not difficult to derive the following general
formula for symmetrized powers or plethysms of arbitrary irreducible representations of
SO∗(2n):

Proposition 5.1.Let the partitionλ be such thatλ′1 6 min(k, n) and letρ be an arbitrary
partition of r, then

[k(λ)] ⊗ {ρ} =
∑
µ

y
µ
λρ [kr(µ)] (5.1)

where the summation is over all partitionsµ such thatµ′1 6 min(kr, n) and the coefficients
y
µ
λρ are determined by the expansion

(({λs}〈2k〉 · B)⊗ {ρ}) · A =
∑
µ

y
µ
λρ{µs}〈2kr〉 (5.2)

whereA = B−1.

Furthermore, just as for ease of calculation (2.8) can be replaced by (2.10), so (5.2) can
be replaced by

((({λs}〈2k〉N · BN)N ⊗ {ρ})M · AM)M =
∑
µ

y
µ
λρ{µs}〈2kr〉M (5.3)

whereN = min(2k, n) andM = min(2kr, n). Finally in order to read off the required
plethysm coefficients in (5.1) from (5.3) it is only necessary to retain the leading term
{µ} in each signed sequence{µs}〈2kr〉M , since it is only the leading term of each signed
sequence that satisfies the requiredSp(2kr)-standardness conditionµ′1 6 kr. This implies
that in using (5.3) in (5.1) we may effectively replaceM = min(2kr, n) by min(kr, n), a
considerable simplification which leads to the following corollary.

Corollary 5.2. With the notation of proposition 5.1 theSO∗(2n) plethysm coefficientsyµλρ
are determined by

((({λs}〈2k〉N · BN)N ⊗ {ρ})K · AK)K =
∑
µ

y
µ
λρ{µ} (5.4)

whereN = min(2k, n) andK = min(kr, n).

The significance of (5.3) and the subsequent remarks leading finally to (5.4) can be seen
in the evaluation of the terms in the plethysm [2(21)] ⊗ {21} of SO∗(24). In such a case
we havek = 2, r = 3 andn = 12 so thatN = 4, M = 12 andK = 6. We show how
to calculate all terms [6(µ)] of [2(21)] ⊗ {21} up to weight 16 and of widthµ1 6 3 using
(5.3). Such terms will necessarily have lengthµ′1 6 6.

Sincek = 2 the signed sequence is evaluated inSp(4) giving

{21s}〈4〉4 = {21} − {213}. (5.5)

Next the terms in theB-series up to weight 16, width 3 and length 4 are

{0} +{12} +{14} +{22} +{2212}
+{24} +{32} +{3212} +{3222} +{34}. (5.6)

The tensor product of the terms in (5.5) with those of (5.6) is to be carried out inU(N)

with N = 4. Again up to weight 16, width 3 and length 4 this gives

{21} +{221} +{312} +{32} +{3212}
+{322} +{321} +{3221}. (5.7)
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Now we calculate the mixed symmetry third-order plethysm signified by{21} of this sum
of terms inU(M) with M = 12 to give up to weight 16, width 3 and now length 12:

{241} +{2413} +2{251} +{2513} +2{261}
+{271} +{3214} +2{32212} +3{32214} +{323}
+9{32312} +5{32314} +6{324} +15{32412} +4{32414}
+10{325} +11{32512} +7{326} +{3213} +2{3215}
+3{3221} +12{32213} +7{32215} +18{32221} +33{322213}
+9{322215} +45{32231} +40{322313} +54{32241} +12{3312}
+20{3314} +5{3316} +10{332} +60{33212} +51{33214}
+40{3322} +117{332212} +71{3323} +32{341} +70{3413}
+120{3421} +28{35}.

(5.8)

Then the terms in theA-series up to weight 16, width 3 and length 12 are found to be

{0} −{12} +{212} −{23} −{313}
+{3221} −{3222} +{34} (5.9)

and their tensor product with the terms in (5.8) calculated inU(12) gives

{241} −{2415} +{251} −{2513} +{3214}
−{3216} +2{32212} −2{32216} +{323} +4{32312}
−4{32314} −{32316} +3{324} −3{32414} +2{325}
−2{32512} +{3213} −{3217} +3{3221} +5{32213}
−5{32215} −3{32217} +10{32221} −10{322215} +10{32231}
−10{322313} +7{3312} −7{3316} +6{332} +13{33212}
−13{33214} +12{3322} +6{3323} +10{341} +14{3421}
+4{35}.

(5.10)

Now the labelling is changed to that of irreducible representations ofSO∗(24) with kr = 6
inserted before each partition to yield

[6(241)] −[6(2415)] +[6(251)] −[6(2513)] +[6(3214)]
−[6(3216)] +2[6(32212)] −2[6(32216)] +[6(323)] +4[6(32312)]
−4[6(32314)] −[6(32316)] +3[6(324)] −3[6(32414)] +2[6(325)]
−2[6(32512)] +[6(3213)] −[6(3217)] +3[6(3221)] +5[6(32213)]
−5[6(32215)] −3[6(32217)] +10[6(32221)] −10[6(322215)] +10[6(32231)]
−10[6(322313)] +7[6(3312)] −7[6(3316)] +6[6(332)] +13[6(33212)]
−13[6(33214)] +12[6(3322)] +6[6(3323)] +10[6(341)] +14[6(3421)]
+4[6(35)].

(5.11)

At first the appearance of negative terms seems disconcerting until it is realized that they
correspond to non-standard terms in the signed sequences{µs}〈12〉 of (5.3). Restricting
attention, as required, toSO∗(24)-standard terms in accordance with (5.4), finally yields
the result

[2(21)] ⊗ {21} =
[6(241)] +[6(251)] +[6(3214)] +2[6(32212)] +[6(323)]
+4[6(32312)] +3[6(324)] +2[6(325)] +[6(3213)] +3[6(3221)]
+5[6(32213)] +10[6(32221)] +10[6(32231)] +7[6(3312)] +6[6(332)]
+13[6(33212)] +12[6(3322)] +6[6(3323)] +10[6(341)] +14[6(3421)]
+4[6(35)] + · · ·

(5.12)
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up to weight 16 and width 3, where it is to be noted that, as promised, the surviving terms
all have lengthµ′1 6 6. This is becauseK = min(kr, n) = 6. It would clearly have
been simpler to use (5.4) at an earlier stage and discard all terms of length greater than 6
in (5.8)–(5.11) rather than to use (5.3) and keep terms up to length 12. At each step the
calculation would have involved fewer terms and the final signed sequence problems would
have been circumvented. This example, while exhibiting the fact that signed sequences do
emerge in a natural way, serves to illustrate the computational merits of corollary 4.2.

6. Resolution ofH2 =H ⊗ {2} +H ⊗ {12}

In the special case for whichρ is a partition of 2, so thatr = 2, we haveK = N =
min(2k, n) in (5.4). Consequently for symmetrized squares of irreducible representations of
SO∗(2n) we have

[k(λ)] ⊗ {ρ}] = [(({λs}〈2k〉 · B)⊗ {ρ}) · A)N ] (6.1)

where all products and plethysms are to be carried out inU(N). Setting{ρ} = {2} and
{12}, using the algebra of plethysms and the fact that [5](B ⊗ {2}) ·A = B+BA = B+ and
(B ⊗ {12}) · A = B−BA = B− it follows that

[k(λ)] ⊗ {2} = [2k(({λs}〈2k〉 ⊗ {2}) · B+)N ] + [2k(({λs}〈2k〉 ⊗ {12}) · B−)N ] (6.2a)

[k(λ)] ⊗ {12} = [2k(({λs}〈2k〉 ⊗ {12}) · B+)N ] + [2k(({λs}〈2k〉 ⊗ {2}) · B−)N ] (6.2b)

whereN = min(2k, n).
Further specialization of the above result leads to

Hm ⊗ {2} = [1(m)] ⊗ {2} =
∞∑
p=0

m∑
x=0

[2(2m+ p − x, p + x)] with p + x even (6.3a)

Hm ⊗ {12} = [1(m)] ⊗ {12} =
∞∑
p=0

m∑
x=0

[2(2m+ p − x, p + x)] with p + x odd. (6.3b)

This can be seen by noting that inU(2) each term{p2} of B belongs toB+ or B− according
asp is even or odd, respectively, while{m}⊗ {2} and{m}⊗ {12} contain terms of the form
{2m − x, x} with x even and odd, respectively. Typical terms contributing to (6.3a) are
represented diagrammatically by

a a a a c c c c c d d d

b b b b d d
(6.4)

where there are preciselyp columns containing the pair(a, b), x columns containing the
pair (c, d), m − x columns containing justc and the same number containing justd, with
p andx either both even or both odd.

Summing over allm we obtain
∞∑
m=0

Hm ⊗ {2} =
∞∑
r=0

r∑
s=0

(s + 1)[2(r, s)] with r ands both even (6.5a)

∞∑
m=0

Hm ⊗ {12} =
∞∑
r=0

r∑
s=0

(s + 1)[2(r, s)] with r ands both odd. (6.5b)

The first of these follows from the fact that for fixedr and s the distribution of letters in
diagrams of type (6.4) is such that the number ofds in the second row of lengths can vary
from 0 to s, while the number in the first row is necessarily(r − s)/2. The second follows
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in the same way. The only difference is now that instead ofr ands both being even, they
are both odd.

This allows us to resolveH 2 into its symmetric and antisymmetric partsH ⊗ {ρ} with
{ρ} = {2} and{12}, respectively.

Proposition 6.1.Let Crs = (r − s + 1)(s + 1). Then for{ρ} = {2} and{12} we have

H ⊗ {ρ} =
∞∑
r=0

r∑
s=0

C{ρ}rs [2(r, s)] (6.6)

with

C{2}rs =


1
2(Crs + s + 1) if r ands are both even
1
2(Crs − s − 1) if r ands are both odd
1
2Crs otherwise

(6.7a)

C{1
2}

rs =


1
2(Crs − s − 1) if r ands are both even
1
2(Crs + s + 1) if r ands are both odd
1
2Crs otherwise.

(6.7b)

Proof. Since

H 2 =
(∑

m

Hm

)2

=
∑
m

H 2
m +

∑
m6=m′

HmHm′ (6.8)

it follows that

H ⊗ {2} =
(∑

m

Hm

)
⊗ {2} =

∑
m

(Hm ⊗ {2})+ 1
2

∑
m6=m′

HmHm′

=
∑
m

(Hm ⊗ {2})+ 1
2

(
H 2−

∑
m

H 2
m

)
= 1

2(H
2+

∑
m

(Hm ⊗ {2} −Hm ⊗ {12})). (6.9a)

Similarly

H ⊗ {12} = 1
2

(
H 2−

∑
m

(Hm ⊗ {2} −Hm ⊗ {12})
)
. (6.9b)

The results (6.7) then follow from (4.3) and (6.5). �

7. Relations between group chains and irreducible representations ofSO∗(2n) and
Sp(2n,R)

Starting with the metaplectic groupMp(4nk) we may relate the decompositions involving
the non-compact subgroupsSO∗(2n) andSp(2n,R) by means of the commutative diagram:

SO∗(2n)× Sp(2k) ← Mp(4nk) → Sp(2n,R)×O(2k)
↓ ↓

U(n)× Sp(2k) U(n)×O(2k)
↓ ↓

U(n)× SO(2k) → ← U(n)× SO(2k)

(7.1)
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The terminal subgroup in each case isU(n) × SO(2k). Taking into account the labels
used to distinguish mutually associate pairs of irreducible representations ofSp(2nR), the
decomposition of the metaplectic irreducible representation1̃ of Mp(4nk) proceeds as
indicated below:∑

κ [k(κ)] × 〈κ〉 ← 1̃ → ∑
λ〈k(λ)〉 × [λ]

↓ ↓∑
κ [k(κ)]U(n) × 〈κ〉

∑
λ〈k(λ)〉U(n) × [λ]

↓ ↓∑
κ [k(κ)]U(n) × [κ/AD] → ← ∑

λ(〈k(λ+ (1− δλ′1k)λ∗)〉U(n) × [λ]

(7.2)

where the symbols [· · ·]U(n) and〈· · ·〉U(n) signify restriction fromSO∗(2n) andSp(2n,R),
respectively, toU(n), while the skew products ofκ with A andD correspond to passing
from Sp(2k) up toU(2k) and then down toSO(2k). It should be noted that at the level
of U(n)× SO(2k) the summations over bothκ andλ are restricted so that these partitions
have no more thanP parts withP = min(k, n).

Since [13]

AD = W =
∞∑
r=0

r∑
s=0

(−1)s{r, s} with r − s even (7.3)

it follows that on comparing the terms of the form· · · × [λ] we have

[k(λ ·W)]U(n) = 〈k(λ)〉U(n) +
(
1− δλ′1k

)〈k(λ∗)〉U(n). (7.4)

As special cases of this withk = 1 andλ = (0) and(1), we obtain

(H+)U(n) = [1(M+)]U(n) = 〈1(0)〉U(n) + 〈1(0∗)〉U(n) (7.5a)

(H−)U(n) = [1(M−)]U(n) = 〈1(1)〉U(n). (7.5b)

It should be stressed that quite generally a knowledge of the restriction toU(n) of any direct
sum of harmonic series unitary irreducible representations of bothSO∗(2n) andSp(2n,R)
is sufficient to determine these representations up to equivalence. This is because such
representations are determined up to equivalence by their characters which are themselves
evaluated on elements of the maximal compact subgroupU(n).

8. Powers and plethysms of irreducible representations ofSO∗(2n) from those of
Sp(2n,R)

The results of the previous section lead to an alternative method of computing powers of
the basic harmonic representationH of SO∗(2n) and its constituentsH+ andH−. Since
H = H+ + H− it follows from (7.5) that theU(n) content of the harmonic representation
H of SO∗(2n) coincides with that of the representationS of Sp(2n,R), where

S = 〈1(0)〉 + 〈1(0∗)〉 + 〈1(1)〉. (8.1)

The same must be true of both their powers and plethysms.
SinceS is a self-associate representation ofSp(2n,R) it follows that itspth power may

be written in the form

Sp =
∑

µ:µ′16P
gµ〈p(µ+ (1− δµ′1p)µ∗〉 (8.2)

with P = min(p, n), for some set of coefficientsgµ. It then follows from (7.5) that

Hp =
∑

µ:µ′16P
gµ[p((µ ·W)P )] (8.3)



6704 R C King et al

where the subscriptP on (µ ·W)P indicates that the only terms(ν)P to be retained are those
for which ν ′1 6= P = min(p, n). Likewise, for any partitionπ of p, the corresponding
pth-fold symmetrized power may be expanded in the form

S ⊗ {π} =
∑

µ:µ′16P
hµ〈p(µ+ (1− δµ′1p)µ∗〉 (8.4)

for some particular set of coefficientshµ. It then follows that

H ⊗ {π} =
∑

µ:µ′16P
hµ[p((µ ·W)P )]. (8.5)

A similar situation applies toH+ andH−, and indeed to plethysms and powers of any sum
of SO∗(2n) representations of the form [k(λ ·W)] as in (7.4). Conversely, plethysms and
powers of any self-associate sum ofSp(2n,R) representations of the form〈k(κ · V )〉 can
be evaluated from a knowledge of the powers and plethysms of [k(κ)] in SO∗(2n), where
V = W−1 = W ′.

As a final example we compute the terms ofH− ⊗ {21} up to weight 12 and width 4 in
SO∗(24) starting from theSp(24,R) plethysm

〈1(1)〉 ⊗ {21} =
〈3(21)〉 +〈3(213)〉 +〈3(221)〉 +2〈3(312)〉 +2〈3(32)〉
+2〈3(3212)〉 +2〈3(322)〉 +3〈3(321)〉 +2〈3(41)〉 +2〈3(413)〉
+6〈3(421)〉 +4〈3(43)〉 +4〈3(4312)〉 +5〈3(432)〉 +5〈3(421)〉
+2〈3(423)〉.

(8.6)

Now we remove the prefixp = 3 and standardize the irreducible representations in the
groupU(3) to give

{21} +{221} +2{312} +2{32} +2{322}
+3{321} +2{41} +6{421} +4{43} +5{432}
+5{421} +2{423}.

(8.7)

The terms in theW -series up to weight 12 are

{0} −{12} +{2} +{22} −{31}
−{32} +{4} +{42} +{42}. (8.8)

Forming the tensor product, inU(3), of (8.7) and (8.8), and keeping terms up to weight 12
and width 4 gives

{21} +{221} +2{312} +2{32} +2{322}
+4{321} +{33} +3{41} +7{421} +6{43}
+9{432} +7{421} +6{423}.

(8.9)

These U(3) irreducible representations are now converted intoSO∗(24) irreducible
representations by insertingp = 3 before each partition and adopting the notation
appropriate to the groupSO∗(24) leading to

H− ⊗ {21} =
[3(21)] +[3(221)] +2[3(312)] +2[3(32)] +2[3(322)]
+4[3(321)] +[3(33)] +3[3(41)] +7[3(421)] +6[3(43)]
+9[3(432)] +7[3(421)] +6[3(423)] + · · · .

(8.10)

This is the same as the result that can be found using (5.1) and (5.4). While the above
calculation was carried out forSO∗(24) it should be noted that the result is valid for all
SO∗(2n) with n > 6.
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9. Concluding remarks

The objective in writing this paper has been to complete the results hinted at in [4]. In the
process methods for calculating tensor products and plethysms of the infinite dimensional
unitary irreducible representations ofSO∗(2n) have been developed. In addition explicit
results have been obtained for the case of the basic infinite-dimensional harmonic
representationH of SO∗(2n) and its various constituentsH± and Hm. Furthermore,
the embedding of the product groupsSO∗(2n) × Sp(2k) and Sp(2n,R) × O(2k) in
the metaplectic groupMp(4nk) has been shown to yield interesting and indeed useful
relationships between irreducible representations of the non-compact groupsSO∗(2n) and
Sp(2n,R) as well as their powers and plethysms.
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